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A number of experimental papers [1-4] have been devoted to the problem of the asymmetric 
interaction of deformable bodies during impact loading. The experimental research on three- 
dimensional flows is limited mainly to the recording of the final integral parameters of the 
process. The theoretical studies performed so far on three-dimensional flows which develop 
during impact loadings deal with the initial stage, and are descriptive in nature [5]. In 
the present article we use the method of finite elements [5-7] to treat numerically the three- 
dimensional problem of the interaction of a deformable body of revolution (cylinder) with 
a rigid wall for an impact velocity of 300 m/sec and angles of approach from 0 to 75 ~ . 

i. The equations which describe unsteady adiabatic motions of a solid compressible 
medium have the form 

9du/d t  = ai;,;; . ( 1. i )  

Og/Ot + div 9v = O; ( 1 . 2 )  

d E / ~  = (]/p)aijsH, ( 1 . 3 )  

w h e r e  o i j  = - P d i j  + S i j  a r e  t h e  c o m p o n e n t s  o f  t h e  s t r e s s  t e n s o r ,  t h e  r  a r e  t h e  c o m p o n e n t s  
o f  t h e  s t r a i n - r a t e  t e n s o r ,  t h e  v i  a r e  t h e  c o m p o n e n t s  o f  t h e  v e l o c i t y ,  p i s  t h e  d e n s i t y ,  and E 
is the internal energy density. 

The spherical part of the stress tensor is a function of the density and the internal 
energy: 

3 

~ 1  
(1.4) 

where Kn, P0, and K0 are material constants. 

The deviatoric components of the stress tensor are found from the relation [8] 

2G sis - -  - T  8hh ~j ----- - 7  + ~,Sij, ( 1 . 5 )  

where dS~j/dt is the Jaumann derivative, defined by 

d S ~  = dSii/dt S~Wih  - -  Sj,,W~h, ( 1 . 6 )  

where 2Wij = 3vi/Sxj - 3vj/3x i. The parameter X is identically zero for elastic deformation, 
and for plastic deformation it is determined by using the Mises yield condition 

2 2 
S~jS~; = T ~ ( io 7 ) 

Here G is the shear modulus and o 0 is the dynamic yield stress. 

2. We consider the problem of the impact of a deformable cylinder on a rigid wall. "The 
velocity of the axisymmetric striker before impact coincides with its axis of symmetry and 
forms an angle ~ with the normal to the obstacle. The striker occupies the region D with 
the boundary R z and R:, where R z is the contact boundary of the striker and the rigid obstacle, 
and R2 is the free boundary of the striker. We pose the problem of solving Eqs. (1.1)-(1,7) 
with the following initial and boundary conditions: 

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 112-118, July-August, 1985. Original article submitted April 17, 1984. 

0021-8944/85/2604-0553509.50 �9 1986 Plenum Publishing Corporation 553 



the initial conditions 

(~.(0,  x) = E(0,  x) = 0~ t~(0, x) = 0o, 

Vl(0 ., x) = 0 v~(O~ x) = - - v  o sin ~, va(O , x) = --Vo cos a for x ~ D. (2.1) 

the boundary condition on the free surface 

T N N ( t , x ) = T N h ( t , x ) = T N % ( G ~ = 0  ~r  x ~ R  I.  ( 2 . 2 )  

t h e  b o u n d a r y  c o n d i t i o n  on t h e  s u r f a c e  o f  c o n t a c t  b e t w e e n  t h e  s t r i k e r  a n d  t h e  r i g i d  w a l l  
- the condition of sliding without friction 

T N q ( t , x ) = T ~ ( t , @ = 0 ~  v n = 0  ~r  x ~ R  I ,  ( 2 . 3 )  

where N is a unit vector normal to the surface at the point under consideration, T z and ~2 
are perpendicular unit vectors in the plane tangent to the surface at the point under con- 
sideration, and TN is the force per unit area on the surface with the normal N. In (2.2) and 
(2.3) the subscripts Tz, T2, and N on the vectors TN and v denote their projections on the 
corresponding basis vector. 

3. We solve the above boundary-value problem by the method of finite elements [5, 7- 
9]. Using this method, we construct a discrete model of a body consisting of a finite num- 
ber of finite elements appropriately connected at the corner points. The equation of motion 
for a typical finite element of a continuous medium is derived by using the principle of vir- 
tual velocities. Assuming that the mass of the elements is uniformly distributed over the 
nodes of the tetrahedral elements used in the calculations, the equation of motion for the 
whole ensemble of elements has the form [9] 

L 
, r l;,(l) rah vr~ ~-~ ( 3. l ) 

Z=l  

where mk is the mass of the k-th node; v'rk is the r-th component of the acceleration of the 
k-th node; and F(E)rn is the r-th component of the equivalent force on the n-th node of the 
s element. The elements of the body fin(s are defined in the following way: 

�9 (~[, if  the n-th node of the l - t h  element corresponds to 
~ ( l )  10 the k-th node of the associated model, 

otherwise. ' 

The indices in (3.1) take on the following values: k = i, 2 ..... M, where M is the number 
of nodes in the finite-element model of the cylinder; r = i, 2, 3; n = i, 2, 3, 4; s = i, 
2, ..., L, where L is the total number of elements. 

The energy equation for the s element has the form 

E'(Z) = (--P + Q)V "(z) + V m S u ~  

where V (s is the relative volume of the element, and Q is the artifical viscosity. 

The conservation of mass equation for an element is 

(p/po)V (0 = 1. 

In accordance with the method of finite elements, the r-th component of the velocity within 
the s tetrahedral element is expressed in terms of the four nodal values within the frame- 
work of the linear approximation assumed in the calculations by the formula 

I 
= Yrs. (3.2) v~ z) ~ (a~. + b,~x~ + c~x~ + d~x~) (~) 

The coefficients appearing in (3.2) are determined in terms of the coordinates for each of 
the four nodes of the tetrahedral element, denoted by the indices p, q, s, and u: 
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(3 .3 )  

The values of the remaining twelve coefficients are determined with the formulas given by 
the cyclic permutation of the indices. The strain rates within the s element are calcu- 
lated with the relation 

by using (3.2) and (3.3). 

�9 (z) (,) ' (Ov~ <' Ov~ ,)] 

The components of the equivalent nodal forces appearing in Eq. (3.1) are found with the 
formulas 

lVIa --= --(t/6)(bn(Yll -I- enql~-I- dnffl3)t 
F~n -- --(1/6)(c~o%2 ~- b ~ l  2 + d~%3)., 

F3,~ = --(t/6)(d~%a -t- c,~(~2~ + b,~(A3). 

In the numerical calculations we used the artificial viscosity [i0] 

= T] +~}n IT] '  

V" = O, 
O~ T -  " 

-~- <0~, 

where ao is the speed of sound in the material of the cylinder, and h is the minimum height 
of the tetrahedron. 

The time increment in the integration which ensures a stable solution was determined 
from a numerical experiment, and has the form 

A t =  gT+ 

4. We investigated the interaction between a rigid wall and a steel cylinder 0.0125 m 
in diameter and having a length of three diameters. The velocity of the striker was 300 m/ 
sec. The angle of impact was varied from 0 to 75 ~ . The following numerical values of the 
material constants were used in the calculations: P0 = 7800 kg/m 3, a0 = 5100 m/sec, o 0 = 
i0.I.i0 ~ N/m 2, G = 7.9.10 l~ N/m 2, K l = 1.53-i011N/m 2, K 2 = 1.76.1011N/m 2, K 3 = 0.532.10 II 
N/m 2, K 0 = 1.91. 

The interaction process was traced in detail by plotting striker configurations at suc- 
cessive instants. Figure 1 shows the configuration of the striker at 40 Dsec for a 30 ~ angle 
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of impact obtained with a graphical plotting device. The curves in Fig. 2 for the time de- 
pendence of the kinetic energy of the striker characterize the dynamics of the interaction 
in the range of impact angles investigated. Here and in the remaining figures, curves 5-1 
correspond to angles of impact of 15, 30, 45, 60, and 75 ~ . Analysis of the curves shows four 
main characteristic stages of the process. The first of these, characterized by a falloff 
of the curves, corresponds to the deformation of the head end of the cylinder, and is predom- 
inant for small angles of impact and unique for normal axisym~etric impact. 

The following horizontal parts of the curves describe sliding of the cylinder along the 
wall of its simultaneous rotation and no noticeable deformation. 

For 30-60 ~ angles of impact there is a certain time interval during which the cylinder 
is not in contact with the obstacle. During this time the front part of the striker moves 
upward away from the wall, and the rear part moves downward toward the wall. 

The second sharp decrease of kinetic energy was produced by the impact of the rear end 
of the cylinder with the obstacle. The graph shows that the drop in energy at this stage 
for a 45 ~ angle of impact is approximately the same as for the interaction with the front 
part of the striker, and for angles of 60 and 75 ~ even somewhat larger, 

The final horizontal parts of the curves determine the sliding of the cylinder along 
the obstacle with a subsequent final withdrawal from it. 

For a 15 ~ angle of impact there is no second drop of kinetic energy. In this case the 
vertical component of the velocity of the center of mass of the striker changes sign at 70 
~sec, and the cylinder begins gradually to withdraw from the wall. During this time it has 
an insignificant angular velocity. The center of mass practically coincides with the center 
of rotation. Up to the instant the rear end of the cylinder is at the bottom, the center 
of mass of the striker recedes from the obstacle to a distance greater than the distance from 
the center of rotation to the rear end of the cylinder, which passes over the obstacle without 
grazing it, 

The graphs of the time variation of the forces of interaction of the striker with the 
wall shown in Fig. 3 for various angles of impact further characterize the multistage process 
described. The first maxima on the curves in Fig. 3 characterize the interaction of the front 
part of the cylinder with the obstacle. Then there are drops which for angles of 30, 45, 
and 60 ~ reach zero. For an angle of 75 ~ the cylinder-obstacle interaction does not vanish 
until the final withdrawal of the cylinder from the obstacle, which indicates continuous con- 
tact of the striker with the obstacle. The secondary maxima correspond to the impact of the 
rear end of the striker with the wall. 

The graphs show that for an angle of 45 ~ the force exerted on the obstacle during the 
impact of the rear end of the cylinder is comparable with the force exerted by the front part 
of the striker, and for angles of 60 and 75 ~ even larger. This is accounted for by the in- 
crease of the vertical component of the velocity of the rear end of the cylinder as a result 
of rotation. 

The time variations of the vertical component of the velocity of the center of the rear 
surface of the striker are shown in Fig. 4 for various angles of impact. 

The slowing down of the rear surface is most pronounced for an angle of 15 ~ . The veloc- 
ity falls from an initial value of 290 m/sec to 40 m/sec in 80 ~sec. Figure 5 shows that 
by this time the vertical component of the velocity of the center of mass has already changed 
sign and is directed upward from the obstacle. After 90 Dsec the cylinder loses contact with 
the obstacle, and the striker moves upward and rotates, which results in a certain increase 
of the vertical velocity of the rear surface. 
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For an angle of 30 ~ the velocity drops from an initial value of 260 m/sec to 170 m/sec 
in 50 ~sec. The front part of the cylinder is deformed and the striker is bent in the middle. 
The velocity is approximately constant and equal to 170 m/sec from 50 to i00 psec, which cor- 
responds to rotation and sliding of the cylinder along the rigid wall. This results in a 
redistribution of velocities such that the vertical component of the velocity of the center 
of the rear surface is constant, and the area of contact of the cylinder with the obstacle 
is decreased. During this time there is no further appreciable deformation of the front part 
of the cylinder. From i00 psec the striker is not in contact with the obstacle. There is 
a certain increase of velocity during the withdrawal of the cylinder from the obstacle as 
a result of an increase of the angular velocity and the corresponding component of its linear 
velocity. From 120 to 150 psec the striker moves in space and rotates. The part of the curve 
from 160 to 220 ~sec corresponds to the impact of the rear end of the cylinder with the ob- 
stacle and its subsequent motion along it. Starting at 220 psec the rear end of the cylinder 
separates from the wall, and the striker finally loses contact with the obstacle. 

The curve for 45 ~ differs quantitatively but not qualitatively from that for 30 ~ . Thus, 
because of the increase in the angle of impact, the deformation of the front edge of the cyl- 
inder is more pronounced, and as a result the retardation of the rear surface and that of 
the whole striker is negligible. The vertical component of the velocity decreases from an 
initial value of 212 m/sec to 195 m/sec in 40 psec. Then there is a small increase in the 
vertical velocity of the center of the rear surface when the deformation of the front part 
of the cylinder has largely ceased and the striker slides along the obstacle until t = 80 
~sec. From this time on the front part of the striker separates from the wall, and for 30 
psec the cylinder moves in space without having contact with the obstacle. Between ii0 and 
180 psec the rear end of the cylinder collides with the wall, is deformed, slides along it, 
and then separates from the obstacle, and from this time on moves away from it. 

The character of the curve for an angle of 60 ~ is somewhat different from those con- 
sidered above. After the horizontal part extending from 0 to i0 psec, which corresponds to 
a negligible deformation of the front edge of the cylinder, the curve rises, and in contrast 
with angles of 15, 30, and 45 ~ , the front edge of the striker is deformed inward toward the 
axis. This increase is due to the rotation of the cylinder, which here is considerably more 
rapid than for smaller angles. The part of the curve from 50 to 90 psec is flatter and cor- 
responds to a decrease of the linear velocity during the rotation of the body as at result 
of the displacement of the center of rotation toward the rear end of the striker. From 90 
to ii0 psec the rear part of the striker interacts with the obstacle. After this the cylin- 
der separates from the wall, and the interaction stops. The curve for the variation of the 
vertical component of the velocity of the center of the rear surface for an angle of 75 ~ is 
similar to the curve for 60~ therefore all the above is valid for it, too. 

Calculations showed that the horizontal component of the velocity of the center of mass 
remains constant during the whole interaction process. This is a result of the boundary con- 
ditions given above, in which no restriction was imposed on the horizontal component of the 
velocity. Thus, only a redistribution of the horizontal components of the velocities at the 
nodes of the computational region can occur. The horizontal components of the velocity of 
the center of the rear surface of the striker for various angles of impact have the form 
shown in Fig. 6. The similarity of the curves further confirms the generality of the multi- 
stage process of the interaction of a cylinder with a rigid wall for various angles of impact. 
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The initial drops on the curves correspond to deformations of the front part of the 
striker and its bending, and are more or less pronounced depending on the angle of impact. 

The subsequent rises of the curves correspond to sliding of the cylinder along the ob- 
stacle, accompanied by rotation. As the striker rotates and its rear end approaches the 
wall, the magnitude and direction of the horizontal component of the linear velocity change, 
which also is accounted for by the rise of the curves. Local minima on the curves corre- 
sponds to the impact of the end of the cylinder with the obstacle, and the following horizontal 
portions to sliding of the striker along the wall, followed by separation from it. It is 
clear from the figure that the horizontal velocity in these intervals is the same as the ini- 
tial value. 

Thus the asymmetric interaction of a deformable cylinder with a rigid wall occurs in 
several stages. Analysis of the results obtained shows four characteristic stages: deforma- 
tion of the front part and bending of the striker; motion of the cylinder along the obstacle, 
accompanied by rotation; impact of the rear end with the obstacle, and its deformation; slid- 
ing of the striker along the wall, followed by separation from it. For different angles of 
impact these stages are more or less distinct qualitatively and quantitatively and in their 
duration. 

In the range of initial conditions investigated, there were angles of impact between 
60 and 75 ~ for which the interaction mechanism changes qualitatively; for smaller angles there 
is a stage when there is no contact of the striker with the obstacle, even before the process 
has completely ended. 

The authors thank V. G. Dulov for his attention to the work and a discussion of it. 
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